Abstract

In this paper, a road-departure warning unit taking into account driver-vehicle-infrastructure (DVI) interactions is proposed. The longitudinal and lateral vehicle dynamics limits are analyzed to detect the road departure on loss of control. Vehicle positioning and time to lane crossing (TLC) are used to detect the road departure on a defect of guidance. Prevention of excessive longitudinal speed is handled through the computation of a critical longitudinal speed when approaching a curve and speed profile generation in the straight road section preceding the curve. For the lateral mode, the vehicle oversteering or understeering, the yaw motion, and the lateral acceleration are analyzed. The vehicle lateral displacement and the TLC values are also examined when the vehicle dynamics are not excessive. Necessary data for detection algorithms, which are not available from measurements, are estimated using an extended Kalman filter. The system consists of several subsystems, which work in parallel and provide warning through a dedicated human-machine interface (HMI). This road-departure warning system is experimentally tested on a test track using a prototype vehicle. It is found to be efficient and robust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.