Abstract


 
 
 For electric vehicles, technology for monitoring, diagnosis, and prognosis of the electrical power system (EPS) becomes essential for safe and efficient operation. To this end, we develop a general system-level integrated diagnosis and prognosis framework, which detects, isolates, and identifies EPS faults, and predicts when the EPS will fail to deliver sufficient power. The approach takes advantage of recent work in structural model decomposition in order to distribute the global diagnosis and prognosis problems into local subproblems that can be solved in parallel, thus enabling implementation on distributed computational platforms. The framework is applied to the EPS of a planetary rover testbed, and is demonstrated using data from field experiments.
 
 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.