Abstract
Resource selection (RS) is one of the prime phases of product design that have substantiating impact on the manufacturing of products. Material and manufacturing process selection are considered an important ingredient of RS and must be dealt with in early stages of design. Since, emerging technologies such as Additive Manufacturing (AM) have re-defined the potentials of manufacturing by re-orienting market drivers such as high part-complexity needs, individualization, shorter product development cycles, abundant materials and manufacturing processes, diverse streams of applications, etc., it is imperative to select the right compromise of materials, manufacturing processes and associated machines in early stages of design considering the Design for Additive Manufacturing guidelines. As several criteria, material attributes and process functionality requirements are involved for decision making in the industries today, an integrated design-oriented framework is proposed in this paper for RS in AM to structure design knowledge pertaining to each stage of design process; conceptual, embodiment and detail designs. However, more focus will be kept on the conceptual and embodiment design phases. Moreover, axioms are defined to aid in decision making and help in extracting the rules associated with each of the design criteria. The framework is aimed to act as a guideline for designers in the AM industry to provide design oriented and feasible material-machine-process combinations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.