Abstract
This article addresses an emergency shelter and medical network design problem by integrating evacuation and medical service activities and considering diurnal population shifts to respond to large-scale natural disasters in urban areas. A multi-objective mixed-integer programming model that incorporates the characteristics of diurnal population shifts is developed to determine the configuration of the integrated emergency shelter and medical network. An accelerated Benders decomposition algorithm is then devised to solve large-scale problems in reasonable time. A realistic case study on the Xuhui District of Shanghai City in China and extensive numerical experiments are presented to demonstrate the effectiveness of the proposed model and solution method. Computational results suggest that more emergency shelters and emergency medical centers should be established when accounting for diurnal population shifts than when diurnal population shifts are not considered. The accelerated Benders decomposition algorithm is significantly more time efficient as compared with the CPLEX solver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IISE Transactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.