Abstract

In this paper, a novel concept of integrating an active torque balancing mechanism with a planetary gear reducer is presented. This integrated device is composed of a speed reduction unit and a torque compensation unit. The speed reduction unit, which contains a two-stage planetary gear train, can make the device to transform the speed and torque for meeting the needed requirements of the machine. The torque compensation unit, which consists of a differential gear train and a servo motor, can make the device to balance the input torque fluctuations of the mechanical system. Through an analytical method, an exact control function which can totally eliminate the input torque fluctuation of the driving motor of the machine is derived for the servo motor of the integrated device. At the same time, by adjusting the structure parameters of the differential gear train, the torque fluctuation of the servo motor can be limited too. Besides, in order to obtain a satisfactory tradeoff between the torque fluctuations of the driving motor and the servo motor, an optimization method is developed to find an appropriate control function for the servo motor. In addition, an integrated approach is proposed to optimize both the structure parameters of the differential gear train and the control function of the servo motor. Two numerical examples are given to illustrate the design procedures and to show their feasibilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call