Abstract
A correct estimation of both direction and intensity of wind velocity is fundamental for controlling an autonomous sail-boat. This kind of estimation has to be performed in a harsh environment considering the direct exposition of the sensor to salt, fog, and to any variable weather conditions. An important feature is represented by the sensor size, which has to be small compared to the drone size. Costs have to be optimized with respect to the overall small budget involved in the construction of the drone. Finally, extensive use on drones or in large sensor networks should be greatly advantaged by an easy substitutability in the case of accidental damage or system loss, an eventuality which is difficult to be completely avoided for large scale, prolonged monitoring activities. In this work authors propose a low cost ultrasonic planar anemometer with a very interesting price to performance ratio which is obtained by introducing a simple, original and innovative Arduino based architecture. Preliminary design and the results of calibration will be described, followed by testing activities performed on a low-speed large section wind tunnel, available at University of Florence supported by simple but effective computational fluid dynamic (CFD) simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.