Abstract

This paper develops a coreless-stator permanent magnet synchronous motor (PMSM) for reaction wheels applied to attitude control of satellites. The reaction wheel motor requires a design of lightweight, low operation loss, high efficiency and high inertia to keep the satellite operation stable with minimized power consumption. A coreless-stator design possesses the advantages of low core loss and lightweight and is considered suitable. However, this design may suffer significant eddy current loss induced in the conductors by the rotor alternating magnetic field, and this is unbeneficial to loss reduction. Moreover, due to the high inertia of the reaction wheel, torque and current would persist for a long duration, leading to copper losses that should not be disregarded. Therefore, the operation scenarios of the satellites should be considered in the reaction wheel design. In this paper, a comprehensive analysis for various design factors is conducted to minimize the power loss of the reaction wheel, taking the satellite operation scenarios into account. Finally, a lightweight and low-loss reaction wheel motor is designed and simulated. Experiments are conducted to validate the design and analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call