Abstract
Micro-energy networks are the smallest element of integrated energy systems, and tapping into the integrated demand response potential of micro-energy networks is conducive to improving energy use efficiency and promoting the development of new energy sources on a large scale. This paper proposes a day-ahead integrated demand response strategy for micro-energy grid that takes into account the dispatchable loads. Considering the gradient use of thermal energy, a typical micro-energy grid structure including electricity, gas, medium-grade heat, low-grade heat, and cold energy is constructed, a comprehensive energy equipment model is established, and the refined scheduling models of the dispatchable loads are given. On this basis, with the operating economy of the micro-energy grid as the optimization objective, the integrated demand response strategies of tariff-type and incentive-type are proposed. Through case study analysis, it is verified that the proposed strategy can optimize the energy consumption structure of the micro-energy grid under the guidance of time-of-use tariffs, reducing the operating costs. The proposed strategy fully exploits the demand response potential of the micro-energy grid through the dispatchable loads and the multi-energy complementarity of electricity, heat, and cold, realizes the comprehensive coordination and optimization of source-network-load-storage, provides a larger peak-regulating capacity, and exhibits practical applicability in engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.