Abstract

With the development of energy integration technology, demand response (DR) has gradually evolved into integrated demand response (IDR). In this study, for the integrated energy system (IES) on the distribution grid side with electricity, heat, natural gas network, and hydrogen energy equipment, the analogy relationship between the thermal and mobile hydrogen energy storage networks is proposed. Moreover, a unified model that reflects network commonalities across different energy forms is established. Then, considering the time delay of the IES in the nontransient network, a time-domain two-port model of the IES considering the time delay is established. This model shows the joint effect of time and space on system parameters. Finally, this study validates the model in the application of DR. The verification results show that in DR, the time-domain two-port model can accurately “cut peaks and fill valleys” for the IES and effectively reduce the operating cost of the IES system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call