Abstract

Adhesion tissue is formed following injury to the uterine basal layer. Currently, there is no effective treatment for severe intrauterine adhesion (IUA), which causes loss of reproductive function. Enhanced understanding of the molecular mechanisms driving severe IUA would be beneficial for the treatment. Differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) in severe IUA (n = 3) and normal (n = 3) endometrium were analyzed by high-throughput microarray analysis. Subsequently, the target genes of the differentially expressed miRNAs were predicted and found to overlap with the differentially expressed mRNAs. Gene Ontology and pathway analyses were performed for the intersecting genes. Three of the significantly dysregulated miRNAs and 4 of their target mRNAs were further assessed using quantitative real-time polymerase chain reaction (PCR) in 10 severe IUA and 10 normal endometrium samples. Microarray analysis indicated that 26 miRNAs and 1180 mRNAs were significantly different between the 2 groups. Of these, 16 miRNAs and 54 mRNAs overlapped with putative miRNA target genes and prediction of target gene. Real-time PCR revealed upregulation of hsa-miR-513a-5p and has-miR-135a-3p and downregulation of hsa-miR-543 and their corresponding target genes, plus downregulation of ADAM9 (a disintegrin-containing and metalloproteinases) and lysyl oxidase and upregulation of CDH2 (N-cadherin) and COL16A1 (collagen 16A1). Both CDH2 and COL16A1 were bioinformatically predicted and confirmed in vitro as target genes of miR-543. This study provides an integrated data set of the miRNA and mRNA profiles in severe IUA, showing involvement of many miRNAs and their target genes. Further analysis of these genes will help in understanding of the molecular mechanism of IUA formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.