Abstract

Wastewater treatment plants (WWTPs) play an irreplaceable role in eliminating pollutants from domestic and industrial wastewater and contribute to water recycling. Nowadays, the selection of processes configuration of WWTPs mainly depends on the local wastewater treatment standards and the experience of wastewater engineers rather than an intelligent data-driven strategy. In this study, an integrated data-driven strategy consisting of t-distributed stochastic neighbor embedding (t-SNE) and deep neural networks (DNNs) is proposed for optimizing the processes configuration of full-scale WWTP predesign. A large dataset with 14,647 samples collected from 10 full-scale WWTPs with distinct treatment processes is clustered by the t-SNE method based on the influent characteristics, and four meaningful clusters (Clusters I–IV) are identified for the subsequent development of DNN classification models. All four DNN models achieve acceptable classification accuracy (>0.8975) and the maximal testing accuracy is 0.9505. The DNN models are capable of finding the optimized processes configuration of WWTPs under target scenarios. Our results highlight the strength of combining the t-SNE and the DNN models to utilize the relationships between key parameters and processes configuration of WWTPs, and help engineers predesign WWTPs with the optimal processes configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.