Abstract

Summary As today's tall buildings become ever taller and more slender, wind-induced vibration is a serious design issue. This paper presents integrated damping systems for tall buildings. An emphasis is placed on investigating the potential of double skin facades (DSF) as an integrated damping system for tall buildings. In the first scheme, the connectors between the inner and outer skins of the DSF system are designed to have low axial stiffness with a damping mechanism. Through this design, vibration of the primary building structure can be substantially reduced. However, excessive movements of the DSF outer skin masses are a design limitation. In the second scheme, the tuned mass damper (TMD) and DSF damping (DSFD) interaction system is studied to mitigate the design limitation of the first scheme and to resolve other TMD-related design issues. TMDs are usually very large and located near the top of tall buildings for their effective performance. As a result, very valuable occupiable space near the top of tall buildings is sacrificed to contain large TMDs. In addition, installing TMD systems means adding additional masses to tall buildings. Through the TMD/DSFD interaction system, these issues can also be substantially addressed. Compared with the conventional TMD system, the TMD/DSFD interaction system requires a significantly reduced TMD mass ratio to achieve the same target damping ratio. Compared with the first scheme only with the DSFD mechanism, movements of the DSF outer skins can be better controlled in the TMD/DSFD interaction system. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call