Abstract

Noble and transition metal nanomaterials are widely used in glucose sensing. However, the fabrication of these sensors still suffers from complex nanomaterial synthesis process and unstable nanomaterial loading on sensing surfaces. Herein, a Cu–Au bimetallic microelectrode array was prepared via local electrochemical deposition and electrochemical reduction without the need for templates and additional nanomaterial preparation processes. Based on the COMSOL computational fluid study, the obtained microelectrode arrays combined with microfluidic channels allow the continuous and rapid detection of glucose. Large number of active sites on the surface of 3D nano-arrays contributes to excellent sensing performance for glucose, with good linear detection ranges in 10 µM to 4 × 102 µM and 4 × 102 µM to 4 × 105 µM, and a low detection limit of 284 nM. The feasibility of sensor in real sample was verified by detecting glucose in beverages with good recoveries ranging from 95.50% to 104.31%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.