Abstract
Nitrogen-vacancy (NV) centers in diamond have emerged as promising quantum sensors due to their highly coherent and optically addressable spin states with potential applications in high-sensitivity magnetometry. Homogeneously addressing large ensembles of NV centers offers clear benefit in terms of sensing precision as well as in fundamental studies of collective effects. Such experiments require a spatially uniform, intense, and broadband microwave field that can be difficult to generate. Previous approaches, such as copper wires, loop coils, and planar structures, have shown limitations in field homogeneity, bandwidth, and integration in compact devices. In this paper, we present a coplanar waveguide (CPW) gold coil patterned on a 3 × 3 mm 2 diamond substrate, offering full integration, enhanced stability, and broad bandwidth suitable for various NV sensing applications. Coil fabricated on diamond offers several advantages for magnetometry with NV centers ensemble, including enhanced heat dissipation, seamless integration, scalability, and miniaturization potential. We optimize critical geometrical parameters to achieve a homogeneous magnetic field with a coefficient of variation of less than 6% over an area of 0.5 mm 2 and present experimental results confirming the performance of the proposed CPW coil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.