Abstract

Peptides are promising agents for the treatment of a variety of diseases due to their specificity and efficacy. However, the development of peptide-based drugs is often hindered by the potential toxicity of peptides, which poses a significant barrier to their clinical application. Traditional experimental methods for evaluating peptide toxicity are time-consuming and costly, making the development process inefficient. Therefore, there is an urgent need for computational tools specifically designed to predict peptide toxicity accurately and rapidly, facilitating the identification of safe peptide candidates for drug development. We provide here a novel computational approach, CAPTP, which leverages the power of convolutional and self-attention to enhance the prediction of peptide toxicity from amino acid sequences. CAPTP demonstrates outstanding performance, achieving a Matthews correlation coefficient of approximately 0.82 in both cross-validation settings and on independent test dataset. This performance surpasses that of existing state-of-the-art peptide toxicity predictors. Importantly, CAPTP maintains its robustness and generalizability even when dealing with data imbalances. Further analysis by CAPTP reveals that certain sequential patterns, particularly in the head and central regions of peptides, are crucial in determining their toxicity. This insight can significantly inform and guide the design of safer peptide drugs. The source code for CAPTP is freely available at https://github.com/jiaoshihu/CAPTP. Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call