Abstract

We describe the optical conditions that are essentially necessary for phase-contrast imaging with aberration-corrected scanning transmission electron microscopy (STEM), whose depth of field has reached almost comparable to the specimen thickness. For such state-of-the-art STEM, contrast-transfer-function (CTF) should be defined not solely for the projected potential but multiply for each wavefront during the beam propagation across the specimen thickness; an integration of multiple CTFs (iCTF). We show that the iCTF concept explains fairly well characteristic annular-bright-field (ABF) imaging behaviors of heavy/light atom sites against the defocus changes, and also provide notable concerns on possible artifacts that arise from different imaging-depth dependences between the heavy/light atom sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.