Abstract

Altered lung tissue bioenergetics plays a key role in the pathogenesis of lung diseases. A wealth of information exists regarding the bioenergetic processes in mitochondria isolated from rat lungs, cultured pulmonary endothelial cells, and intact rat lungs under physiological and pathophysiological conditions. However, the interdependence of those processes makes it difficult to quantify the impact of a change in a single or multiple process(es) on overall lung tissue bioenergetics. Integrated computational modeling provides a mechanistic and quantitative framework for the bioenergetic data at different levels of biological organization. The objective of this study was to develop and validate an integrated computational model of lung bioenergetics using existing experimental data from isolated perfused rat lungs. The model expands our recently developed computational model of the bioenergetics of mitochondria isolated from rat lungs by accounting for glucose uptake and phosphorylation, glycolysis, and the pentose phosphate pathway. For the mitochondrial region of the model, values of kinetic parameters were fixed at those estimated in our recent model of the bioenergetics of mitochondria isolated from rat lungs. For the cytosolic region of the model, intrinsic parameters such as apparent Michaelis constants were determined based on previously published enzyme kinetics data, whereas extrinsic parameters such as maximal reaction and transport velocities were estimated by fitting the model solution to published data from isolated rat lungs. The model was then validated by assessing its ability to predict existing experimental data not used for parameter estimation, including relationships between lung nucleotides content, lung lactate production rate, and lung energy charge under different experimental conditions. In addition, the model was used to gain novel insights on how lung tissue glycolytic rate is regulated by exogenous substrates such as glucose and lactate, and assess differences in the bioenergetics of mitochondria isolated from lung tissue and those of mitochondria in intact lungs. To the best of our knowledge, this is the first model of lung tissue bioenergetics. The model provides a mechanistic and quantitative framework for integrating available lung tissue bioenergetics data, and for testing novel hypotheses regarding the role of different cytosolic and mitochondrial processes in lung tissue bioenergetics.

Highlights

  • 2778-Pos Prediction of Novel Host-Pathogen Interactions for Helicobacter Pylori Through Interface Mimicry and their Implications to Gastric Cancer Emine Guven Maiorov, Chung-Jung Tsai, Buyong Ma, Ruth Nussinov

  • Detection of host-pathogen interactions (HPIs) and mapping the re-wired HPI network along with its structural details - is critical for in-depth understanding of the underlying pathogenesis mechanisms of infections, pathogen-triggered cancers, and developing efficient therapeutics

  • We are leveraged the results of experimentally-derived data to develop a computational model to simulate the pathophysiology behind Catecholaminergic Polymorphic Ventricular Tachycardia-5 (CPVT-5), a variation of CPVT caused by a mutation in the protein triadin

Read more

Summary

Introduction

2778-Pos Prediction of Novel Host-Pathogen Interactions for Helicobacter Pylori Through Interface Mimicry and their Implications to Gastric Cancer Emine Guven Maiorov, Chung-Jung Tsai, Buyong Ma, Ruth Nussinov. Detection of host-pathogen interactions (HPIs) and mapping the re-wired HPI network along with its structural details - is critical for in-depth understanding of the underlying pathogenesis mechanisms of infections, pathogen-triggered cancers, and developing efficient therapeutics. We are leveraged the results of experimentally-derived data to develop a computational model to simulate the pathophysiology behind CPVT-5, a variation of CPVT caused by a mutation in the protein triadin.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call