Abstract

The computation of Lagrangian coherent structures typically involves post-processing of experimentally or numerically obtained fluid velocity fields to obtain the largest finite-time Lyapunov exponent (FTLE) field. However, this procedure can be tedious for large-scale complex flows of general interest. In this work, an alternative approach involving computation of the FTLE on-the-fly during direct numerical simulation of the full three dimensional Navier-Stokes equations is developed. The implementation relies on Lagrangian particle tracking to compose forward time flow maps, and an Eulerian treatment of the backward time flow map [S. Leung, J. Comput. Phys. 230, 3500-3524 (2011)] coupled with a semi-Lagrangian advection scheme. The flow maps are accurately constructed from a sequence of smaller sub-steps stored on disk [S. Brunton and C. Rowley, Chaos 20, 017503 (2010)], resulting in low CPU and memory requirements to compute evolving FTLE fields. Several examples are presented to demonstrate the capability and parallel scalability of the approach for a variety of two and three dimensional flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.