Abstract

While the employment of wide bandgap (WBG) devices in high-frequency and high-voltage applications brings benefits such as reduced system size and improved efficiency, it aggravates the electromagnetic interference (EMI) issue due to fast switching. High-frequency EMI noise suppression relies mainly on the filter design, where the filter's performance is strongly affected by parasitics. Through analyzing the common-mode (CM) equivalent circuit of a half-bridge power module, this letter identifies the key parasitics that dominate the performance of a common-mode filter (CMF) at high frequencies. To minimize the parasitics, the concept of integrating the CMF inside the WBG power module package is developed to improve the noise attenuation. A π-type CMF is integrated with a half-bridge GaN-based power module as a prototype to validate the concept. Experiments are conducted by measuring the CM noise spectrum received by the line impedance stabilization networks (LISNs) from the hard switching of the designed power module under 70 V and 80 kHz. Comparing the measured results of the integrated CMF to the externally-added CMF, up to 50 dBμV more attenuation is achieved by the integrated CMF in the frequency range of 10 MHz to 100 MHz, verifying the theoretical analysis and the established CM equivalent circuit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.