Abstract

Coherent optical communication provides optical links with a high spectral efficiency and sensitivity. An essential feature of a coherent optical receiver is to phase lock the optical local oscillator to the carrier of the incoming signal. In this work, we propose and demonstrate, for the first time, a novel coherent optical receiver, where the relative instantaneous phase between the incoming optical carrier and a semiconductor laser (SCL), serving as the optical local oscillator, is first detected using a balanced photodiode, filtered, and used in a feed-forward scheme to modify the phase of the optical local oscillator, effectively recovering the input carrier, which is then used for data recovery. The proposed architecture leverages high-performance on-chip photonic devices to realize a low-power coherent optical receiver without utilizing a phase-locked loop and eliminates the required high data-rate ADC, lowering the complexity of the backend DSP. The photonic part of the implemented prototype was integrated on a 180 nm silicon-on-insulator photonic process within a footprint of 1.0 mm × 0.8 mm. Clock and data recovery at 10 GBaud/s with bit-error-rates better than 10-6 and 10-3 for optical BPSK and QPSK have been demonstrated, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call