Abstract

This study investigated an integrated CO2-hydrothermal carbonization (CO2-HTC) and steam gasification of bamboo feedstock, an abundant biomass in Vietnam. Bamboo underwent CO2-HTC at 240 °C under 100% CO2 atmosphere with a biomass-to-water ratio of 1:4 and a residence time of 60 min. The resulting hydrochar served as feedstock for steam gasification at 900 °C under an atmosphere of 40% H2O and 60% N2. A parallel experiment using raw bamboo provided a basis for comparison. Results indicate notable enhancements in fixed carbon content, bulk density, and higher heating value of bamboo subsequent to CO2-HTC. The CO2-HTC bamboo displayed a higher maximum decomposition rate. Its char also showed quicker conversion, enhancing gasification efficiency. A syngas richer in both H2 and CO by 2% was also produced with CO2-HTC bamboo compared to the raw bamboo. The observed improvements in gasification performance suggest promising avenues for the more effective and sustainable utilization of bamboo in energy production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call