Abstract

Integrated CO2 capture and hydrogenation to produce formate offers a sustainable approach for reducing carbon dioxide emissions and producing liquid hydrogen carriers (formate) simultaneously. In the current study, three different types of aqueous amine solutions including monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) were investigated as CO2-capturing and hydrogenation agents in the presence of a Pd/NAC catalyst. The effect of amine structures on the CO2 absorption products and formate yield was investigated thoroughly. It was found that the formate product was successfully produced in the presence of all three aqueous amine solutions, with tertiary amine TEA accounting for the highest formate yield under the same CO2 loadings. This is due to the fact that primary and secondary amine moieties in MEA and DEA are responsible for the formation of CO2 adducts of carbamate and bicarbonate, whereas the tertiary amine moiety in TEA is responsible for the formation of hydrogenation-favorable bicarbonate as the solo CO2 absorption product. A high yield of formate of 82.6% was achieved when hydrogenating 3 M TEA with 0.3 mol CO2/mol amine solution in the presence of a Pd/NAC catalyst. In addition, the physio-chemical properties of the Pd/NAC catalyst analyzed using TEM, XRD and XPS characterization were applied to rationalize the superior catalytic performance of the catalyst. The reaction mechanism of integrated CO2 capture and hydrogenation to produce formate in aqueous amine solutions over Pd/NAC catalyst was proposed as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call