Abstract

We present a CMOS-compatible, Q-switched mode-locked integrated laser operating at 1.9 µm with a compact footprint of 23.6 × 0.6 × 0.78mm. The Q-switching rate is 720 kHz, the mode-locking rate is 1.2 GHz, and the optical bandwidth is 17nm, which is sufficient to support pulses as short as 215 fs. The laser is fabricated using a silicon nitride on silicon dioxide 300-mm wafer platform, with thulium-doped Al2O3 glass as a gain material deposited over the silicon photonics chip. An integrated Kerr-nonlinearity-based artificial saturable absorber is implemented in silicon nitride. A broadband (over 100 nm) dispersion-compensating grating in silicon nitride provides sufficient anomalous dispersion to compensate for the normal dispersion of the other laser components, enabling femtosecond-level pulses. The laser has no off-chip components with the exception of the optical pump, allowing for easy co-integration of numerous other photonic devices such as supercontinuum generation and frequency doublers which together potentially enable fully on-chip frequency comb generation.

Highlights

  • High repetition-rate ultrafast mode-locked lasers (MLL) have unique advantages for applications such as photonic analog-to-digital converters, comb spectroscopy, optical arbitrary waveform generation and low-noise microwave synthesis

  • Repetition rates beyond 1 GHz were achieved by either active modulation techniques [1,2], which restricted the pulse duration to more than a few picoseconds, with nonlinearity-induced optical bistability where multimode noise suppression was necessary for a stable operation [3,4], or by introducing a semiconductor saturable absorber, in which case the pulse duration remained more than a few picoseconds [5,6,7]

  • Passive mode-locking techniques have been shown to generate femtosecond-level pulses at high repetition rates when used with some form of an external repetition-rate multiplier to bring the system into the GHz-level regime [8,9]

Read more

Summary

Introduction

High repetition-rate ultrafast mode-locked lasers (MLL) have unique advantages for applications such as photonic analog-to-digital converters, comb spectroscopy, optical arbitrary waveform generation and low-noise microwave synthesis. The compact size of the gain cavity integrated on chip together with an on-chip passive mode-locking technique could provide GHz-level pulse repetition rates with pulse durations in the femtosecond regime without any external repetition rate multiplication [11,12]. Numerous passive photonic components necessary for integrated MLLs have already been demonstrated in this fabrication platform These devices include wavelength filters/couplers, mode-locking elements, and integrated diffraction gratings [17,18]. With a well-developed onchip gain platform and demonstrated passive components necessary for mode-locking, it is evident that on-chip high repetition rate MLLs will follow a similar development path to that of the conventional lasers, proceeding along the path from a continuous wavelength to Qswitched, to Q-switch-mode-locked, and to CW mode-locked devices. In this work we demonstrate a significantly improved laser architecture that allows for truly compact devices (23.5 × 0.78 mm) and achieves a cavity repetition rate of 1.2 GHz, with bandwidth that would support 215fs pulses

Laser architecture and fabrication platform
Laser components design and characterization
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.