Abstract

This paper presents a statistical study of various integrated parameters of solar active regions, such as the distance between the polarity centroids, the inclination of the magnetic axis, the flux imbalance between the polarities, and the interosculation parameter of the magnetic fluxes of opposite polarities. The study is based on observations of the longitudinal photospheric magnetic field. We analyze ten active regions for which an appreciable volume of data with good spatial resolution are available. The distributions of the above parameters with field strength are very different for quiet and flare-productive active regions and for quiet and flare-active evolutionary phases of the same active region. Some distributions exhibit substantial and characteristic variations during the development of certain flare processes. The first moments of the distributions reflect specific features in the configuration of the photospheric magnetic fields and are correlated with the level of eruptive processes in the active regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call