Abstract

Integrated optical filters show outstanding capability in integrated reconfigurable photonic applications, including wavelength division multiplexing (WDM), programmable photonic processors, and on-chip quantum photonic networks. Present schemes for reconfigurable filters either have a large footprint or suffer from high static power consumption, hindering the development of reconfigurable photonic integrated systems. Here, a reconfigurable hybrid Bragg grating filter is elaborately designed through a precise, modified coupling mode theory. It is also experimentally presented by integrating non-volatile phase change material (PCM) Sb2Se3 on silicon to realize compact, low-loss, and broadband engineering operations. The fabricated filter holds a compact footprint of 0.5 µm × 43.5 µm and maintains a low insertion loss of < 0.5 dB after multiple levels of engineering to achieve crystallization. The filter is able to switch from a low-loss transmission state to the Bragg reflection state, making it a favorable solution for large-scale reconfigurable photonic circuits. With a switching extinction ratio over 30 dB at 1504.85 nm, this hybrid filter breaks the tradeoff between insertion loss and tuning range. These results reveal its potential as a new candidate for a basic element in large-scale non-volatile reconfigurable systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call