Abstract

Hyperpolarization of (13) C labeled substrates via dynamic nuclear polarization has been used as a method to noninvasively study real-time metabolic processes occurring in vivo. In these studies, proper calibration of radiofrequency transmit power is required to efficiently observe rapidly decaying magnetization. Conventional transmit radiofrequency field (B₁⁺) mapping methods rely on placing magnetization in a fixed, known state prior to imaging, making them unsuitable for imaging of hyperpolarized magnetization. Recently, a phase-based B(1) mapping method based on the Bloch-Siegert shift has been reported. This method uses a B(1) -dependent shift in the resonance frequency of nuclei in the presence of an off-resonance radiofrequency pulse. In this article, we investigate the feasibility of Bloch-Siegert B(1) mapping and observation of metabolism of hyperpolarized [1-¹³C] pyruvate in vivo, in a single injection. The technique is demonstrated with phantom experiments, and in normal rat and pigs in vivo. This method is anticipated to improve quantitative measurements of hyperpolarized (13) C metabolism in vivo by enabling accurate flip-angle corrections. This work demonstrates the use of Bloch-Siegert B(1) mapping under challenging out-of-equilibrium imaging conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.