Abstract
BackgroundStandard diagnosis of urinary tract infection (UTI) via urine culture for pathogen identification (ID) and antimicrobial susceptibility testing (AST) takes 2–3 d. This delay results in empiric treatment and contributes to the misuse of antibiotics and the rise of resistant pathogens. A rapid diagnostic test for UTI may improve patient care and antibiotic stewardship. ObjectiveTo develop and validate an integrated biosensor assay for UTI diagnosis, including pathogen ID and AST, with determination of the minimum inhibitory concentration (MIC) for ciprofloxacin. Design, setting, and participantsUrine samples positive for Enterobacteriaceae (n=84) or culture-negative (n=23) were obtained from the Stanford Clinical Microbiology Laboratory between November 2013 and September 2014. Each sample was diluted and cultured for 5h with and without ciprofloxacin, followed by quantitative detection of bacterial 16S rRNA using a single electrochemical biosensor array functionalized with a panel of complementary DNA probes. Pathogen ID was determined using universal bacterial, Enterobacteriaceae (EB), and pathogen-specific probes. Phenotypic AST with ciprofloxacin MIC was determined using an EB probe to measure 16S rRNA levels as a function of bacterial growth. MeasurementsElectrochemical signals for pathogen ID at 6 SD over background were considered positive. An MIC signal of 0.4 log units lower than the no-antibiotic control indicated sensitivity. Results were compared to clinical microbiology reports. Results and limitationsFor pathogen ID, the assay had 98.5% sensitivity, 96.6% specificity, 93.0% positive predictive value, and 99.3% negative predictive value. For ciprofloxacin MIC the categorical and essential agreement was 97.6%. Further automation, testing of additional pathogens and antibiotics, and a full prospective study will be necessary for translation to clinical use. ConclusionsThe integrated biosensor platform achieved microbiological results including MIC comparable to standard culture in a significantly shorter assay time. Further assay automation will allow clinical translation for rapid molecular diagnosis of UTI. Patient summaryWe have developed and validated a biosensor test for rapid diagnosis of urinary tract infections. Clinical translation of this device has the potential to significantly expedite and improve treatment of urinary tract infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.