Abstract
Phenol-formaldehyde resins are major material classes that are used in a range of applications including composites, adhesives, foams, electronics, and insulation. While efforts have been made to produce renewable resins, there has yet to be an approach that offers potential for economic viability and meets all critical quality metrics. This failure can be attributed largely to the use of phenol and cresol homologues and to high separation costs. In this work, the use of phenol, cresol, and alkyl phenols derived from the aqueous phase generated from catalytic fast pyrolysis of biomass to produce a high-quality biobased resin is demonstrated. Production, through catalytic fast pyrolysis (CFP), separation, through distillation and adsorption unit operations, and synthesis, through typical resol chemistry, produced a resin with properties, such as curing kinetics and molecular weight, competitive with petroleum-derived resin. This work explores a pathway to value-added coproducts from a CFP waste stream, whi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.