Abstract

This work aimed at determining the degree of depuration of a recalcitrant effluent (weak black liquor, WBL) achieved in a series treatment consisting of a first stage methanogenic fluidised bed reactor followed by a second stage aerobic, upflow reactor packed with "biocubes" of Trametes versicolor immobilised onto small cubes of holm oak wood. The mesophilic, lab scale methanogenic fluidised bed reactor contained a microbial consortium immobilised onto granular activated carbon 500 microm average size. The process removed decreasing amounts of organic matter at decreasing hydraulic retention times (HRT), eventually reaching an average of 50% at 0.5 day HRT. Colour and ligninoid removals also decreased with decreasing HRT. Although the methanogenic fluidised bed reactor provided an effective treatment for the degradable organic matter, important concentrations of recalcitrant organic matter and colour still remained in the anaerobic effluent. This anaerobic effluent was fed to the aerobic packed bed reactor. Two HRT were tested in this unit, namely 5 and 2.5 days. The reactor averaged an organic matter removal in the range of 32% COD basis, during an experimental run of 95 days. Colour and ligninoid contents were removed in high percentages (69% and 54%, respectively). There was no significant difference in reactor performance at 5- and 2.5-day HRT. There was a positive correlation between pollutant removal efficiencies and Laccase activity in crude extracts of the reactor liquor. No supplemental soluble carbohydrate was required to sustain the fungus activity and the consistent reactor performance. Overall, the two-stage treatment achieved approximately a 78% removal of the original organic matter of the WBL (COD basis) and ca. 75% of colour and ligninoid contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.