Abstract

A passive coherent location (PCL) system exploits the ambient FM radio or television signals from powerful local transmitters, which makes it ideal for covert tracking. In a passive radar system, also known as PCL system, a variety of measurements can be used to estimate target states such as direction of arrival (DOA), time difference of arrival (TDOA) or Doppler shift. Noise and the precision of DOA estimation are main issues in a PCL system and methods such as conventional beam forming (CBF) algorithm, algebraic constant modulus algorithm (ACMA) are widely analyzed in literature to address them. In practical systems, although it is necessary to reduce the directional ambiguities, the placement of receivers closed to each other results in larger bias in the estimation of DOA of signals, especially when the targets move off bore-sight. This phenomenon leads to degradation in the performance of the tracking algorithm. In this paper, we present a method for removing the bias in DOA to alleviate the aforementioned problem. The simulation results are presented to show the effectiveness of the proposed algorithm with an example of tracking airborne targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.