Abstract

Bedload monitoring techniques have been developed and applied for many years in rivers ranging from steep mountain torrents to the large gravel-bed Danube River in Austria. Most monitoring stations use a combination of direct (mobile bag samplers, slot samplers) and indirect (geophones, hydrophones) measurement methods. Each individual technique is adequate, yet features particular boundary conditions and limitations related to hydraulic and sampling efficiency, functionality during floods, sampling duration or grain size. We show the capabilities and limitations of the different monitoring devices with respect to technical, operational and economic criteria, evaluating their suitability for determining bedload transport parameters. Bedload monitoring results of a measuring site at the Drau River in Carinthia/Austria are used to illustrate the specific range of the device application. We present an integrated automatic and continuous bedload monitoring system. It complements the specific limitations of single monitoring methods by additional measurement devices, enabling comprehensive monitoring of the bedload transport process. We then derive the Bedload Discharge Integrated Calculation Approach and the Bedload Rating Curve Approach and discuss their application for determining bedload discharge Qb and total bedload mass Vb. Whereas the integrated approach combines data from direct monitoring methods with indirect techniques, the rating curve approach uses only data from direct bedload monitoring devices. We demonstrate that applying an integrated automatic and continuous bedload monitoring system and combining the Bedload Discharge Integrated Calculation Approach and Bedload Rating Curve Approach yields accurate bedload discharge results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call