Abstract

Ultra high quality optical resonators have enabled accumulation of exceptionally high intensities of light from low input powers. This feature opens new horizons in low power observation of physical phenomena such as lasing, sensing and radiation pressure driven oscillations. Radiation pressure instability facilitates transfer of energy from photons to mechanical degree of freedom in optical resonators. In high quality toroidal micro cavities, radiation pressure is demonstrated in the form of dynamic back action and results mechanical oscillations with sub-Hz linewidth. Since the toroidal cavities are symmetrical in nature, the exerted radiation pressure can mainly excite radially symmetric modes such as the first cantilever mode and the radially breathing mode. Study of these modes reveals important information about interaction of light and mechanical mode as well as intrinsic properties of the resonator as a mechanical oscillator. However, there are some unexcited mechanical modes that in some cases have even higher mechanical quality factors compared to the usually excited ones. Most of the properties of these mechanical modes remain unknown because the radially symmetric force does not provide a component to excite them. In this research, we have developed a novel method to fabricate asymmetric toroidal resonators (minor and major diameters), which enables us to regeneratively excite unobserved asymmetric modes. One key feature is that the optical quality factor is relatively high despite the asymmetry. As a result, we are able to excite the asymmetric modes with sub-mW threshold powers. Complementary modeling is also performed, confirming the experimental findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.