Abstract

The goal of this pilot study was to develop and test an integrated method to assess kinematics, kinetics and muscle activation of total knee prostheses during dynamic activities, by integrating fluoroscopic measurements with force plate, electromyography and external motion registration measurements. Subsequently, this multi-instrumental analysis was then used to assess the relationship between kinematics, kinetics and muscle activation and early migration of the tibial component of total knee prostheses. This pilot study showed that it is feasible to integrate fluoroscopic, kinematic and kinetic measurements and relate findings to early migration data. Results showed that there might be an association between deviant kinematics and early migration in patients with a highly congruent mobile-bearing total knee prosthesis. Patients that showed high levels of coactivation, diverging axial rotations of the insert and a deviant pivot point showed increased migration and might be at higher risk for tibial component loosening. In the future, to confirm our findings, the same integrated measurements have to be performed in larger patient groups and different prosthesis designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.