Abstract

Short-circuit induced thermal runaway is one of the main obstacles that hinder the large-scale commercial applications of lithium metal batteries. The fast and accurate detection of an internal short-circuit is, therefore, a key step for preventing thermal runaway. The traditional temperature detection is mainly to place temperature sensors outside the battery, which is far from the actual hotspot inside the cell and has a lag in response. In this study, we integrated arrays of micro resistance temperature detectors (AMRTDs) inside the pouch cell. AMRTDs can be used for the detection of a short-circuit with a high temporal and spatial resolution. We show that the initial short-circuit may induce a high temperature local hotspot exceeding 300 °C, whereas the nearby area was still maintained at near room temperature. Our work provides a design strategy for in-situ detection of short-circuits in lithium metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.