Abstract
This research work focuses on integrating the multi attribute decision making with data mining in a fuzzy decision environment for customer relationship management. The main objective is to analyse the relation between multi attribute decision making and data mining considering a complex problem of ordering customers segments, which is based on four criteria of customer’s life time value, viz. length (L), recency (R), frequency (F) and monetary value (M). The proposed integrated approach involves fuzzy C-means (FCM) cluster analysis as data mining tool. The experiment conducted using MATLAB 12.0 for identifying eight clusters of customers. The two multi attribute decision making tools i.e., fuzzy AHP (Analytic Hierarchy Process) and fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are used for ranking these identified clusters. The applicability of the integrated decision making technique is also demonstrated in this paper considering the case of Indian retail sector. This research collected responses from nine experts from Indian retail industry regarding their perception of relative importance of four criteria of customer life value and evaluated weights of each criterion using fuzzy AHP. Transaction data of 18 months of the case retail store was analysed to segment 1,600 customers into eight clusters using fuzzy c-means clustering analysis technique. Finally, these eight clusters were ranked using fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). The findings of this research could be helpful for firms in identifying the more valuable customers for them and allocate more resources to satisfy them. The findings will be also helpful in developing different loyalty program strategies for customers of different clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: E+M Ekonomie a Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.