Abstract

In recent years, more focus has been placed on integrated metal removal processes. Electrokinetic (EK) treatment is superior to other technologies because it can be applied to a variety of mediums. Green nanoparticles, on the other hand, have the potential to significantly reduce pollutant concentrations in a short period of time. In this study, we investigated the possibility of combining green zero-valent iron (nZVI) with EK on Cd and Zn-contaminated sediment. For green synthesis, extracts of dry leaves of mulberry (ML-nZVI) and oak (OL-nZVI) were used, both abundantly present in the Republic of Serbia. The results show that, despite the fact that their availability was greatly reduced, the metals were concentrated and stabilized to a significant extent in the middle of the EK cell (z/L 0.5) after all treatments. When the results were compared, OL-nZVI proved to be a more effective nanomaterial even with smaller doses of OL-nZVI, which is important in terms of achieving better economic benefits. This study identified green nano zero-valent iron as a powerful tool for metal removal when combined with electrokinetic (EK) treatment, which improves green nZVI longevity and migration. This study of the combined green nZVI-EK remediation treatment, in particular, will have an impact on future research in this field, given the achieved efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call