Abstract
In this paper, a novel multi-objective model for dynamic and integrated network design of sustainable closed-loop supply chain network is proposed, which aims to optimize economic, environmental, and social concerns, simultaneously. In order to have a dynamic design, multiple strategic periods are considered during the planning horizon. Furthermore, different short-term decisions are integrated with long-term decisions related to the network design problem. Two of these short-term decisions are determining selling price of products in forward logistics and buying price of used products from customer zones in reverse logistics. Based on the complexity of proposed multi-objective model, a multi-objective imperialist competitive algorithm (MOICA) is proposed to solve the model, and the results are compared with a non-dominated sorting genetic algorithm (NSGA-II). Finally, to evaluate the performance of proposed algorithm, several numerical examples are used, which the results indicate the efficiency of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.