Abstract
AimsDilated cardiomyopathy refers to a heart muscle condition characterized by structural and functional irregularities in the myocardium that are not related to ischemia. Due to diverse etiologies such as genetic mutations, infections, and exposure to toxins, dilated cardiomyopathy can lead to substantial morbidity and mortality despite advances in the management of heart failure in dilated cardiomyopathy patients. We sought to analyze the characteristics of cell-cell communication and the metabolic signaling pathways in dilated cardiomyopathy. Methods and resultsThe single-nucleus sequencing data of left ventricle samples were acquired from two donor datasets and two dilated cardiomyopathy datasets. Three dilated cardiomyopathy bulk-sequencing datasets were included to determine the shared dilated cardiomyopathy-specific alterations in differentially expressed genes and signaling pathways. Using “CellChat,” we analyzed intercellular communication to grasp how cell clusters interact and to map out the impaired signaling pathways in both donor and dilated cardiomyopathy conditions. Gene set enrichment analysis was applied to compare the metabolic signaling before and after dilated cardiomyopathy. We showcased how cell clusters exhibited abnormal cell-to-cell signaling transduction and how each cell type displayed dysfunctional metabolic signaling pathways through the integration of various datasets. The crucial ligand-receptor signaling contributing to outgoing or incoming signaling of dilated cardiomyopathy was identified in a cell-type dependent way, and the cell-specific metabolic alterations in glucose, lipid and amino acid were determined. The expression of gene pairs in BMP and NOTCH signal, as well as the gene expression in the arginine metabolism was validated. ConclusionsWe reveal the key signals and metabolic pathways for dilated cardiomyopathy adaptation and maintenance, providing potential targets for dilated cardiomyopathy interference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.