Abstract

Breeding high yielding water-deficit tolerant rice is considered a primary goal for achieving the objectives of the sustainable development goals, 2030. However, evaluating the performance of the pre-breeding-promising parental-lines for water deficit tolerance prior to their incorporation in the breeding program is crucial for the success of the breeding programs. The aim of the current investigation is to assess the performance of a set of pre-breeding lines compared with their parents. To achieve this goal a set of 7 pre-breeding rice lines along with their parents (5 genotypes) were field evaluated under well-irrigated and water-stress conditions. Water stress was applied by flush irrigation every 12 days without keeping standing water after irrigation. Based on the field evaluation results, a pre-breeding line was selected to conduct physiological and expression analysis of drought related genes at the green house. Furthermore, a greenhouse trial was conducted in pots, where the genotypes were grown under well and stress irrigation conditions at seedling stage for physiological analysis and expression profiling of the genotypes. Results indicated that the pre-breeding lines which were high yielding under water shortage stress showed low drought susceptibility index. Those lines exhibited high proline, SOD, TSS content along with low levels of MDA content in their leaves. Moreover, the genotypes grain yield positively correlated with proline, SOD, TSS content in their leaves. The SSR markers RM22, RM525, RM324 and RM3805 were able to discriminate the tolerant parents from the sensitive one. Expression levels of the tested drought responsive genes revealed the upregulation of OsLEA3, OsAPX2, OsNAC1, OSDREB2A, OsDREB1C, OsZIP23, OsP5CS, OsAHL1 and OsCATA genes in response to water deficit stress as compared to their expression under normal irrigated condition. Taken together among the tested pre-breeding lines the RBL112 pre-breeding line is high yielding under water-deficit and could be used as donor for high yielding genes in the breeding for water deficit resistance. This investigation withdraws attention to evaluate the promising pre-breeding lines before their incorporation in the water deficit stress breeding program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.