Abstract

Dramatic progress in deciphering the regulatory controls in Saccharomyces cerevisiae has been enabled by the fusion of high-throughput genomics technologies with advanced sequence analysis algorithms. Sets of genes likely to function together and with similar expression profiles have been identified in diverse studies. By fusing an advanced pattern recognition algorithm for identification of transcription factor binding sites with a new method for the quantitative comparison of binding properties of transcription factors, we provide an integrated means to move from expression data to biological insights. The Yeast Regulatory Sequence Analysis system, YRSA, combines standard functions with a novel pattern characterization procedure in an intuitive interface designed for use by a broad range of scientists. The features of the system include automated retrieval of user-defined promoter sequences, binding site discovery by pattern recognition, graphical displays of the observed pattern and positions of similar sequences in the specified genes, and comparison of the new pattern against a collection of binding patterns for characterized transcription factors. The comprehensive YRSA system was used to study the regulatory mechanisms of yeast regulons. Analysis of the regulatory controls of a battery of genes induced by DNA damaging agents supports a putative mediating role for the cell-cycle checkpoint regulatory element MCB. YRSA is available at http://yrsa.cgb.ki.se. [YRSA: ancient Scandinavian name meaning old she-bear (Latin Ursus arctos = brown bear/grizzly).]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.