Abstract

Algorithms are presented for integrated analysis of both vascular and nonvascular changes observed in longitudinal time-series of color retinal fundus images, extending our prior work. A Bayesian model selection algorithm that combines color change information, and image understanding systems outputs in a novel manner is used to analyze vascular changes such as increase/decrease in width, and disappearance/appearance of vessels, as well as nonvascular changes such as appearance/disappearance of different kinds of lesions. The overall system is robust to false changes due to inter-image and intra-image nonuniform illumination, imaging artifacts such as dust particles in the optical path, alignment errors and outliers in the training-data. An expert observer validated the algorithms on 54 regions selected from 34 image pairs. The regions were selected such that they represented diverse types of vascular changes of interest, as well as no-change regions. The algorithm achieved a sensitivity of 82% and a 9% false positive rate for vascular changes. For the nonvascular changes, 97% sensitivity and a 10% false positive rate are achieved. The combined system is intended for diverse applications including computer-assisted retinal screening, image-reading centers, quantitative monitoring of disease onset and progression, assessment of treatment efficacy, and scoring clinical trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call