Abstract
Yellow catfish (Pelteobagrus fulvidraco) is an important aquaculture fish susceptible to Aeromonas veronii infection, which causes acute death resulting in huge economic losses. Understanding the molecular processes of host immune defense is indispensable to disease control. Here, we conducted the integrated and comparative analyses of the transcriptome and metabolome of yellow catfish in response to A. veronii infection at the invaded stage and recovering stage. The crosstalk between A. veronii-induced genes and metabolites uncovered the key biomarkers and pathways that strongest contribute to different response strategies used by yellow catfish at corresponding defense stages. We found that at the A. veronii invading stage, the immune defense was strengthened by synthesizing lipids with energy consumption to repair the skin defense line and accumulate lipid droplets promoting intracellular defense line; triggering an inflammatory response by elevating cytokine IL-6, IL-10 and IL-1β following PAMP-elicited mitochondrial signaling, which was enhanced by ROS produced by impaired mitochondria; and activating apoptosis by up-regulating caspase 3, 7 and 8 and Prostaglandin F1α, meanwhile down-regulating FoxO3 and BCL6. Apoptosis was further potentiated via oxidative stress caused by mitochondrial dysfunction and exceeding inflammatory response. Additionally, cell cycle arrest was observed. At the fish recovering stage, survival strategies including sugar catabolism with D-mannose decreasing; energy generation through the TCA cycle and Oxidative phosphorylation pathways; antioxidant protection by enhancing Glutathione (oxidized), Anserine, and α-ketoglutarate; cell proliferation by inducing Cyclin G2 and CDKN1B; and autophagy initiated by FoxO3, ATG8 and ATP6V1A were highlighted. This study provides a comprehensive picture of yellow catfish coping with A. veronii infection, which adds new insights for deciphering molecular mechanisms underlying fish immunity and developing stage-specific disease control techniques in aquaculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.