Abstract

Wheat seeds can be released from a dormant state by after-ripening; however, the underlying molecular mechanisms are still mostly unknown. We previously identified transcriptional programmes involved in the regulation of after-ripening-mediated seed dormancy decay in wheat (Triticum aestivum L.). Here, we show that seed dormancy maintenance and its release by dry after-ripening in wheat is associated with oxidative modification of distinct seed-stored mRNAs that mainly correspond to oxidative phosphorylation, ribosome biogenesis, nutrient reservoir and α-amylase inhibitor activities, suggesting the significance of post-transcriptional repression of these biological processes in regulating seed dormancy. We further show that after-ripening induced seed dormancy release in wheat is mediated by differential expression of specific proteins in both dry and hydrated states, including those involved in proteolysis, cellular signalling, translation and energy metabolism. Among the genes corresponding to these proteins, the expression of those encoding α-amylase/trypsin inhibitor and starch synthase appears to be regulated by mRNA oxidation. Co-expression analysis of the probesets differentially expressed and oxidized during dry after-ripening along with those corresponding to proteins differentially regulated between dormant and after-ripened seeds produced three co-expressed gene clusters containing more candidate genes potentially involved in the regulation of seed dormancy in wheat. Two of the three clusters are enriched with elements that are either abscisic acid (ABA) responsive or recognized by ABA-regulated transcription factors, indicating the association between wheat seed dormancy and ABA sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.