Abstract

BackgroundAs downstream mediators of PI3K /PTEN /AKT /mTORC1 pathway, the AKT isoforms play critical roles in tumorgenesis. Although the pleiotropic effects of AKT1 in breast cancer have been reported, the genetic and epigenetic characteristics of AKT1 promoter region in breast cancer remains to be identified. In this study we aimed to investigate the promoter mutation spectrum, methylation and gene expression pattern of AKT1 and their relationship with breast cancer.MethodsBy using PCR target sequence enrichment and next-generation sequencing technology, we sequenced AKT1 promoter region in pairs of breast tumor and normal tissues from 95 unselected Chinese breast cancer patients. The methylation of the promoter region and the expression profile of AKT1 in the same cohort were detected with bisulfite next-generation sequencing and qPCR, respectively.ResultsWe identified 28 somatic mutations in 23 of the 95 (24.2%) breast cancer samples. And 19 of the 28 mutations were located in transcription factor (TF) binding sites. In the 23 patients with somatic mutations, no significant change of methylation or expression was found comparing with other patients. AKT1 promoter region was significantly hypo-methylated in tumor compared with matched normal tissue (P = 0.0014) in the 95 patients. The expression of AKT1 was significantly suppressed in tumor tissue (P = 0.0375). In clinicopathological factor analysis, AKT1 showed significant hypo-methylation (P = 0.0249) and suppressed expression (P = 0.0375) in HER2 negative subtype. And a trend of decrease in expression level (P = 0.0624) of AKT1 in the ER negative subtype was observed, which is significantly decreased in basal-like breast tumor (P = 0.0328).ConclusionsHypo-methylation and suppressed expression of AKT1 was observed to be associated with breast cancer in our cohort. The methylation and expression of AKT1 were both significantly associated with HER2 status. The promoter mutation of AKT1 did not show significant association with its methylation and expression status. These results suggested that the promoter mutation, methylation and gene expression of AKT1 may play distinct roles in tumorgenesis of breast cancer and the integrated analysis of methylation and expression of AKT1 might serve as potential biomarkers for diagnosis and classification of breast cancer.

Highlights

  • Breast cancer is a leading cause of cancer-related death in women worldwide

  • In the 23 patients with somatic mutations, no significant change of methylation or expression was found comparing with other patients

  • The methylation and expression of AKT1 were both significantly associated with human epidermal growth factor receptor-2 (HER2) status

Read more

Summary

Introduction

Breast cancer is a leading cause of cancer-related death in women worldwide. According to GLOBOCAN 2012, there are estimated 1.67 million new breast cancer cases diagnosed with over half million deaths each year [1]. Breast cancer has become the most frequently diagnosed cancer in Chinese women, accounted for 12.2% of global cases and 9.6% of related deaths from breast cancer worldwide [2]. The pleiotropic effects of AKT1 in breast cancer have been reported, the genetic and epigenetic characteristics of AKT1 promoter region in breast cancer remains to be identified. In this study we aimed to investigate the promoter mutation spectrum, methylation and gene expression pattern of AKT1 and their relationship with breast cancer

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.