Abstract

N1-methyladenosine (m1A) and long non-coding RNAs (lncRNAs) play significant roles in tumor progression in hepatocellular carcinoma (HCC). However, their association with HCC is still unclear. In this study, lncRNAs related to m1A were extracted from the mRNA expression matrix in The Cancer Genome Atlas (TCGA) database. Five m1A-related lncRNAs (AL031985.3, NRAV, WAC-AS1, AC026412.3, and AC099850.4) were identified based on lasso Cox regression and they generated a prognostic signature of HCC. The prognostic signature was identified as an independent prognosis factor in HCC patients. Moreover, the prognostic signature achieved better performance than TP53 mutation status or tumor mutational burden (TMB) scores in the stratification of patient survival. The immune landscape indicated that most immune checkpoint genes and immune cells were distributed differently between both risk groups. A higher IC50 of chemotherapeutics (sorafenib, nilotinib, sunitinib, and gefitinib) was observed in the high-risk group, and a lower IC50 of gemcitabine in the low-risk group, suggesting the potential of the prognostic signature in chemosensitivity. In addition, fifty-five potential small molecular drugs were found based on drug sensitivity and NRAV expression. Together, five m1A-related lncRNAs generated a prognostic signature that could be a promising prognostic prediction approach and therapeutic response assessment tool for HCC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.