Abstract

Miniature pigs, a valuable alternative model for understanding human tooth development, have deciduous teeth from all four tooth families that are replaced once by permanent molars. The extracellular matrix (ECM) supports cells and maintains the integrity of tooth germs during tooth development. However, details on the role of the ECM in tooth development are poorly understood. Here, we performed long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in the ECM components of deciduous tooth germs by RNA sequencing in miniature pigs. From the early cap to the late bell stages, we identified 4,562 and 3,238 differentially expressed genes (DEGs) from E40 to E50 and E50 to E60, respectively. In addition, a total of 1,464 differentially expressed lncRNAs from E40 to E50 and 969 differentially expressed lncRNAs from E50 to E60 were obtained. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that DEGs were enriched significantly for multiple signaling pathways, especially for the ECM pathway. We then outlined the detailed dynamic gene expression profiling of ECM components during deciduous molar development. Comparison of the cap and bell stages revealed that the structure and functions of the ECM dynamically changed. The ECM-related genes, including THBS1, COL4A5, COL4A6, COL1A1, CHAD, TNR, GP1BA, and ITGA3, were significantly changed, and some were shown to enrich during the bell stage development. Finally, we outlined the coexpression of lncRNAs and ECM properties during tooth development. We showed that the interplay of key lncRNAs could change ECM processes and influence the ECM establishment of tooth patterns to accomplish full tooth formation. These results might provide information to elucidate the regulation network of the lncRNA and ECM in tooth development.

Highlights

  • Tooth maturation is supported by alterations at the cellular and molecular levels, including gene regulation, which underlies all biological behavior and phenotypes [1, 2]

  • Previous studies showed the interactions among THBS, COL A, COL A, and COL A, which are regulated by long noncoding RNA (lncRNA); these interactions may change extracellular matrix (ECM) processes, especially the collagen components, for accomplishing full tooth formation

  • The results revealed previously unknown tooth germ ECM components, including COL A, COL A, THBS, and key regulation lncRNAs, that were found to contribute to ECM remodeling

Read more

Summary

Introduction

Tooth maturation is supported by alterations at the cellular and molecular levels, including gene regulation, which underlies all biological behavior and phenotypes [1, 2]. Current understanding of the molecular mechanisms controlling tooth development is mostly obtained from studies on mice, which have continuously growing incisors, three molars in each jaw quadrant, and a diastema region between the incisor and the molars, lacking canines, premolars, and secondary tooth dentition [3]. Patterns of gene expression have been studied in developing teeth in numerous laboratories around the world [6]. A microarray study showed that about 4,000 differentially expressed genes (DEGs) were related to murine. Many studies have revealed a wide range of functional activities of long noncoding RNAs (lncRNAs), including chromatin remodeling, transcriptional control, and posttranscriptional processing [8, 9]. The regulation of lncRNAs might contribute to odontogenesis, while the dysregulation of lncRNAs is associated with the loss of odontogenic potential [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.