Abstract
As a space camera works in orbit, the stress rebound caused by gravity inevitably results in the deformation of its optomechanical structure, and the relative position change between different optical components will affect the Line-Of-Sight pointing of the camera. In this paper, the optical sensitivity calculation of a space camera’s Line-Of-Sight pointing is realized based on the optomechanical constraint equations, and the Line-Of-Sight equations are constructed using the second type of response (DRESP2) method to realize an optomechanical integrated analysis of the camera’s Line-Of-Sight stability at the structural finite element solver level. The verification results show that the Line-Of-Sight stability error is 6.38%, meaning that this method can identify the sensitive optical elements of the optical system efficiently and quickly. Thus, the method in this paper has important significance as a reference for the analysis of the Line-Of-Sight stability of complex optical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.