Abstract

Cleft palate results from the defective palatal fusion of the medial-edge epithelium after cells undergo epithelial-mesenchymal transition, a process that involves regulation by microRNAs (miRNAs). However, in palatal shelf fusion, miRNA regulation by long non-coding RNAs (lncRNAs) when acting as competing endogenous RNAs (ceRNAs) or miRNA sponges, remains unclear. We systematically analyzed the correlation between lncRNAs, miRNAs, and mRNAs from RNA sequencing profiling in embryonic gestation day 14.5 (E14.5) mouse embryos from control (n=3) and all-trans retinoic acid (ATRA)-treated (n=3) mice. We then constructed a lncRNA-associated ceRNA network. The expression profiles of mRNA, lncRNA, and miRNA were verified by quantitative polymerase chain reaction (qPCR). In total, 18 aberrantly expressed miRNAs, 861 mRNAs, and 583 lncRNAs were identified from palate samples of control and ATRA-treated samples. Bioinformatics data and integrative analysis identified 69 lncRNAs, 18 miRNAs, and 78 mRNAs that were aberrantly expressed, and a ceRNA network was then constructed. Finally, we identified a NONMMUT004850.2/NONMMUT024276.2-miR-741-3p/miR-465b-5p-Prkar1α ceRNA network associated with palatal shelf fusion at E14.5. The qPCR results showed that NONMMUT004850.2 (P=5E-05), NONMMUT024276.2 (P=0.0012), and Prkar1α (P=3E-05) were up-regulated, whereas miR-741-3p (P=0.006) and miR-465b-5p (P=1E-04) were down-regulated in ATRA-treated mice compared to the control samples. The qPCR results were in concordance with the RNA sequencing profiling. Our study demonstrated that NONMMUT004850.2/NONMMUT024276.2-miR-741-3p/miR-465b-5p-Prkar1α could potentially serve as an important regulatory mechanism of palatal fusion in the development of the cleft palate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call