Abstract

Polarized cells contain numerous membrane domains, but it is unclear how the formation of these domains is coordinated to create a single integrated cell architecture. Genetic screens of Drosophila melanogaster embryos have identified three complexes, each containing one of the PDZ domain proteins--Stardust (Sdt), Bazooka (Baz) and Scribble (Scrib)--that control epithelial polarity and formation of zonula adherens. We find that these complexes can be ordered into a single regulatory hierarchy that is initiated by cell adhesion-dependent recruitment of the Baz complex to the zonula adherens. The Scrib complex represses apical identity along basolateral surfaces by antagonizing Baz-initiated apical polarity. The Sdt-containing Crb complex is recruited apically by the Baz complex to counter antagonistic Scrib activity. Thus, a finely tuned balance between Scrib and Crb complex activity sets the limits of the apical and basolateral membrane domains and positions cell junctions. Our data suggest a model in which the maturation of epithelial cell polarity is driven by integration of the sequential activities of PDZ-based protein complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.