Abstract

Dynamic programming algorithms are widely used to find the optimal sequence alignment between any two DNA sequences. This paper presents an innovative technique to significantly reduce the computation time and memory space requirements of the traceback phase of the Smith-Waterman algorithm, together with a flexible and scalable hardware architecture to accelerate the overall procedure. The results obtained from an implementation using a Virtex-4 FPGA showed that the proposed technique is feasible and is able to provide a significant speedup. For the considered test sequences, a speedup of about 6000 was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.